
Tutorial 2: Debugging
Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie


Debugging Tools
• Pencil and paper (diagrams of …., manual step-

through) 

• printf(), assert() 

• Text editor, terminal 

• Eyes, brain 

• Debugger program - gdb, lldb, the one in visual studio 

• A good front-end is nice



The Problem with Linux
• Debuggers are convenient for following the path 

code takes - functions, recursion, templates… 

• Linux has a major dearth of visual debuggers 

• gdb and lldb have a command line interface (okay for 
getting a backtrace after crash … clunky otherwise) 

• DDD, Eclipse, Code::Blocks, CGDB - none great 



“Alright I’ll Just Make My Own Then!”

“oh…that’s why there aren’t any decent ones…”



Enter: VS Code
• Visual Studio Code is very nice (simple, quick, visual) 

• type in “code” in terminal to open 

• install+enable the “C/C++ extension” (puzzle piece icon) 

• you get a text editor 

• breakpoints, watch-list, stack trace, 
git integration, 

• you don’t have advanced views; memory inspect, asm, 
etc.



Setup
• File->”Open Folder” gives you a ‘project’ view 

• Open or create a new main.c file 

• first let us compile the program (you can use the built-in terminal or an external 
one) 

• gcc -o my_demo main.c -g -std=c99 (Linux) 

• clang -o my_demo main.c -g -std=c99 (OS X or Linux) 

• mingw32-gcc my_demo main.c -g -std=c99 (Windows with mingw gcc) 

• -g means “include debugging symbols in my program” 

• you won’t be able to debug without them



Start Debugging
• View->Debug 

• Click in the margin (left of line numbers) to set a 
breakpoint (red circle) 

• the cog button takes you to settings file .vscode/
launch.json 

• which debugger to use, enter your program 
name to run, etc.



Stepping
• Green arrow starts program in debug mode 

• Program pauses on breakpoint line 

• Use step over (next line) 
step in (next line but also go into functions) 
step out (run until we leave the function) 
continue (green arrow) 
stop (red square) 

• local variables’ values (in scope) 

• hover mouse over a local variable 

• right click variable to add to watch list

• call stack of functions open with line that call the next function



Useful For
• Checking why variables or output do not have the 

value you expected - “what am I missing?” 

• Check the flow of execution (esp. other peoples 
spaghetti code) 

• Why lead up to it crashing? 

• “binary search” your breakpoints around



The command-line version
• After compiling with debug symbols 

• gdb ./my_demo (or lldb ./my_demo for OS X) 

• This enters a gdb terminal session 

• type run 

• after it crashes type bt to get a backtrace 

• which line caused the segmentation fault and what leads up 
to that 

• type q to quit gdb



Alternatives
• On Apple install Xcode in Appstore to get all the 

programming tools (clang, lldb, etc.) 

• Xcode and Visual Studio are pretty handy  
(but very bloaty with all the project settings) 

• I still prefer gcc on Windows (but that’s me) 

• Some people like Code::Blocks (in lab) and QT 
Creator on Linux



Other Useful Tools
• Profilers {gprof (linux), Instruments (Xcode), 

VTune} 

• Static Analysis - very handy code mistake finder - 
try Clang’s static analysis tool on your code files. 

• Memory leak checker - Valgrind 

• Friends - code review / tips / sanity check


