Tutorial 2: Debugging

Anton Gerdelan <gerdela@scss.tcd.ie>

mailto:gerdela@scss.tcd.ie

Debugging lools

Pencil and paper (diagrams of, manual step-
through)

orintf(), assert()

Text editor, terminal

Eyes, brain

Debugger program - gdb, Illdb, the one in visual studio

A good front-end is nice

The Problem with Linux

Debuggers are convenient for following the path
code takes - functions, recursion, templates...

Linux has a major dearth of visual debuggers

gdb and lldb have a command line intertace (okay for
getting a backtrace after crash ... clunky otherwise)

DDD, Eclipse, Code::Blocks, CGDB - none great

"Alright I'll Just Make My Own Then!”

#0 main (argc=l, argv=0x7fffffffde98) at src/main.c:55

update_camera_effects (delta);
update_logic_steps (delta); |
cam_pos.v[2] 2

1f (was_action_pressed (g_wipe_screen_action)) {
start_fist ()

\/,;

}
} // endif vic/defeat/no panels open
¥ endif !menuopen

crongdor

CHOOSE THY LEVEL!

vec3 cam_pos = g_cam.world_pos;

/N DUCT /0N
o0 12 SchRope INTRODYCT/ON
TABLE

WEBS AND SO BEG/ING THE TALE OF CRONGDOR -
WI/INCHEST ER BARBAR/IAN, RAIDER, THIEF.

i BRIDGE

6; 1++) { TORCHES

ly (cam_pos.v[@], cam_pos.v[2] 4//

j,CPos R, CAmpOS MRS THREE_DOORS
% only (centre_x, centre_z, S”AKE

- ¥ PILLART EST
y BOWLDER

} Al_T EST
FALL _TEST
- /* draw count stats at start of treasure test level PLATS

before manifold 18 mm»“;;lhllwll]iill T;]H';ULﬂIl always true when updating char PORTAL

after nanifold 16 16 e | TREASURE_T EST

Bl HAMMER _TIME

fier portictes 11 DART S

485 after .00 EIMI

e EEE e BOULDERS

krunning, thread-1d="all L AMPS TES 7_2

aeheveatif (g 700000C “»']Eﬁ‘ji:?r[‘:%#l‘iﬁ:::li:‘r[f\};iqu:me_l»:-c-p”,ar‘gr;:[],flle:" src/main.cpp", fullname="/home -ﬂllf:x;8 x%

TOWER

PALACE

DAGUJA

A 1 L R ——————————————————G

int centre_x = (int) ((cam_pos.v[0]

= + 1
int centre_z = (int) ((cam_pos.v[2] + 1

fb ((shad_Dir)i);
nd_depth_on

tstopped, f rame={addr=

‘oh...that's why there aren’'t any decent ones...”

Fnter: VS Code

Visual Studio Code is very nice (simple, quick, visual)
type in “code” in terminal to open

install+enable the “C/C++ extension” (puzzle piece icon)
you get a text editor

- breakpoints, watch-list, stack trace,
git integration,

you don't have advanced views; memory inspect, asm,
etc.

Setup

File->"Open Folder” gives you a ‘project’ view
Open or create a new main.c file

first let us compile the program (you can use the built-in terminal or an external
one)

gcc -o my demo main.c -g -std=c99 (Linux)

clang -o my demo main.c -g -std=c99 (OS X or Linux)

mingw32-gcc my demo main.c -g -std=c99 (Windows with mingw gcc)
-g means “include debugging symbols in my program”

you won't be able to debug without them

Start Debugging

* View->Debug

* Click in the margin (left of line numbers) to set a
breakpoint (red circle)

* the cog button takes you to settings file .vscode/
launch.json

* which debugger to use, enter your program
name {0 run, elc.

Stepping

Green arrow starts program in debug mode
Program pauses on breakpoint line

Use step over (next line)

step in (next line but also go into functions)
step out (run until we leave the function)
continue (green arrow)

stop (red square)

local variables’ values (in scope)

hover mouse over a local variable

right click variable to add to watch list

call stack of functions open with line that call the next function

Usetul For

* Checking why variables or output do not have the
value you expected - “what am | missing?”

* Check the flow of execution (esp. other peoples
spaghetti code)

* Why lead up to it crashing?

* "pbinary search” your breakpoints around

The command-line version

* After compiling with debug symbols

* gdb ./my_demo (or Illdb ./my_demo for OS X)
e [his enters a gdb terminal session

* type run

o after it crashes type bt to get a backtrace

« which line caused the segmentation fault and what leads up
to that

type q to quit gdb

Alternatives

On Apple install Xcode in Appstore to get all the
programming tools (clang, lldb, etc.)

Xcode and Visual Studio are pretty handy
(but very bloaty with all the project settings)

| still prefer gcc on Windows (but that's me)

Some people like Code::Blocks (in lab) and QT
Creator on Linux

Other Useful Tools

Profilers {gprof (linux), Instruments (Xcode),
VTune}

Static Analysis - very handy code mistake finder -
try Clang’s static analysis tool on your code files.

Memory leak checker - Valgrind

Friends - code review / tips / sanity check

